Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Практическое применение закона постоянства состава вещества. Закон постоянства состава вещества

Практическое применение закона постоянства состава вещества. Закон постоянства состава вещества

Один из основных законов химии, открытый в 1799 г. Ж. Л. Прустом; согласно этому закону определённое химически чистое соединение независимо от способа его получения состоит из одних и тех же хим. элементов, имеющих постоянные состав и свойства,… … Большая политехническая энциклопедия

закон постоянства состава - pastoviųjų santykių dėsnis statusas T sritis fizika atitikmenys: angl. law of constant proportions; law of definite composition vok. Gesetz der konstanten Gewichtsverhältnisse, n; Gesetz der konstanten Proportionen, n; Gesetz der konstanten… … Fizikos terminų žodynas

закон постоянства состава - закон паёв … Cловарь химических синонимов I

ПОСТОЯНСТВА СОСТАВА ЗАКОН: каждое химическое соединение независимо от способа его получения, состоит из одних и тех же элементов, причем отношения их масс постоянны. Строго применим к газообразным и жидким соединениям. Состав кристаллических… … Большой Энциклопедический словарь

ПОСТОЯНСТВА СОСТАВА ЗАКОН: каждое химическое соединение, независимо от способа его получения, состоит из одних и тех же элементов, причем отношения их масс постоянны. Строго применим к газообразным и жидким соединениям. Состав кристаллических… … Энциклопедический словарь

В каждом определенном хим. соед., независимо от способа его получения, соотношения масс составляющих элементов постоянны. Сформулирован в нач. 19 в. Ж. Прустом: Соединение есть привилегированный продукт, которому природа дала постоянный состав.… … Химическая энциклопедия

Один из основных законов химии: каждое определённое химическое соединение, независимо от способа его получения, состоит из одних и тех же элементов, причём отношения их масс постоянны, а относительные количества их атомов выражаются… … Большая советская энциклопедия

Один из осн. законов химии, заключающийся в том, что каждое хим. соединение, независимо от способа его получения, состоит из одних и тех же хим. элементов, соединённых друг с другом в одних и тех же отношениях (по массе). П. с. з. был установлен… … Большой энциклопедический политехнический словарь

Каждое химическое соединение, независимо от способа его получения, состоит из одних и тех же элементов, причём отношения их масс постоянны. Строго применим к газообразным и жидким соединениям. Состав кристаллических соединений может быть и… … Энциклопедический словарь

Каждое хим. соединение, независимо от способа его получения, состоит из одних и тех же элементов, причём отношения их масс постоянны. Строго применим к газообразным и жидким соединениям. Состав кристаллич. соед. может быть и неременным (см.… … Естествознание. Энциклопедический словарь

Закон постоянства состава появился в результате длительного спора (1801–1808 гг.) французских химиков Ж. Л. Пруста, считавшего, что отношения между элементами, образующими соединения, должны быть постоянными, и К. Л. Бертолле, который считал, что состав химических соединений является переменным. С помощью тщательных анализов в 1799–1806 гг. Пруст установил, что отношение количеств элементов в составе соединения всегда постоянно. Он доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества.

В 1806 г. Пруст писал: «Соединение есть привилегированный продукт, которому природа дала постоянный состав. Природа, даже через посредство людей, никогда не производит соединения иначе, как с весами в руках – по весу и мере. От одного полюса к другому соединения имеют тождественный состав. Их внешний вид может различаться в зависимости от способа их сложения, но их свойства никогда не бывают различными. Никакой разницы мы не видим между окисью железа южного полушария и северного; японская киноварь имеет тот же состав, как испанская киноварь; хлористое серебро совершенно тождественно, происходит ли оно из Перу или из Сибири; во всем свете имеется только один хлористый натрий, одна селитра, одна сернокальциевая соль, одна сернобариевая соль. Анализ подтверждает эти факты на каждом шагу». (указать источник)

Закон постоянства состава (постоянных отношений) в итоге был признан большинством химиков, и дискуссия завершилась блестящей победой Пруста.

Согласно этому закону,

каждое химически чистое вещество (соединение) независимо от способа его получения и местонахождения обладает определенным элементным составом.

Под химически чистым веществом подразумевается вещество, в котором химическим путем нельзя обнаружить примеси.

По современным представлениям, закон постоянства состава имеет границы применения.

1. Постоянен лишь атомный состав вещества, т. е. отношение числа атомов элементов (массовый состав – отношение масс элементов – не является постоянным). Это объясняется существованием изотопов (от греч. ισος– равный, одинаковый и τόπος– место) – ядер атомов, содержащих одинаковое число протонов, но разное число нейтронов, и поэтому имеющих разную атомную массу.

Пример 2.2. Рассмотрим молекулы воды, содержащие разные изотопы водорода:

– Н 2 О (молекула содержит изотоп протий с атомной массой 1 – ); массовый состав:m(H) : m(O) = 1: 8;

– D 2 О (молекула содержит изотоп дейтерий с атомной массой 2 – ); массовый состав:m(H) : m(O) = 1: 4;

– Т 2 О (молекула содержит изотоп тритий с атомной массой 3 – ); массовый состав:m(H) : m(O) = 3: 8.

Таким образом, массовый состав молекул разный, тогда как атомный состав один и тот же – n(Н) : n(О) = 2: 1.

2. Закону постоянства состава подчиняются лишь вещества с молекулярной структурой.

Рассмотрим несколько примеров веществ.

Жидкие и твердые растворы. Очевидно, растворы являются химическими соединениями, т. к. свойства раствора не складываются из свойств его компонентов. Причем свойства раствора зависят от относительных количеств взятых веществ. Таким образом, закон постоянства состава не применим к жидким и твердым растворам.

Твердые вещества с атомными кристаллическими решетками – неметаллическими (например, карбид кремния SiC) и металлическими (например, танталдиванадий V 2 Ta).

Пусть мы имеем 10 –7 моль подобного вещества в виде очень маленького монокристалла. Значит ли это, что в таком кристалле SiC (масса его всего 4 мкг) находится точно по 10 –7 моль атомов кремния и углерода? Или в кристаллеV 2 Ta на 210 –7 моль атомов ванадия приходится точно 110 –7 моль атомов тантала? Чтобы ответить на этот вопрос, вспомним, что 10 –7 моль – это около 6·10 16 атомов! Очевидно, что в зависимости от условий получения подобных веществ, они будут содержать избыток того или другого элемента. Это отклонение от стехиометрии может быть существенным, как в случае соединения V 2 Ta, в котором содержание тантала может меняться от 31 до 37 ат.% Ta (стехиометрический состав 33 1/3 ат.% Ta). Отклонение может быть так мало, что не устанавливается современными средствами измерений и практически не сказывается на свойствах, с ним надо считаться только в теоретическом плане, как в случае SiC.

Ионные кристаллы (например, хлорид натрия NaCl, сульфид железа (II) FeS, оксиды железа). Очевидно, все вышесказанное относится и к таким веществам – в зависимости от условий получения для них также наблюдаются отклонения от стехиометрии. Например, кристалл хлорида натрия, нагретый в парах металлического натрия, поглощает последний так, что ν(Na +)/ν(Cl –) становится больше 1, при этом кристалл синеет и становится электронным полупроводником; его плотность уменьшается.

Область составов, в которой существует данное химическое соединение, называется областью его гомогенности.

Так, область гомогенности (от греч. ὁμός – равный, одинаковый; γένω – рождать; homogenes – однородный) Va 2 Ta составляет 31–37 ат.% Ta, NaCl – 50,00–50,05 ат.% Na и т. д. В этих случаях стехиометрический состав находится внутри области гомогенности; такие соединения называются стехиометрическими (или дальтонидами в честь Дж. Дальтона, или двусторонними фазами).

Существуют и соединения, стехиометрический состав которых находится вне области гомогенности, иными словами, при стехиометрическом составе они не существуют. Такие соединения называются нестехиометрическими (или бертоллидами в честь К. Л. Бертолле, или односторонними фазами). Примерами бертоллидов могут служить оксид железа (II) – вюстит (область гомогенности его составляет 43–48 ат.% Fe, что отвечает формуле Fe (0,84–0,96) О или FeO (1,02–1,19)); сульфид железа (II) FeS (область гомогенности его 47,5–49,85 ат.% Fe, что отвечает формуле FeS (1,003–1,05)).

Задание для самостоятельной работы. Заполните таблицу, используя дополнительную литературу:

Соединение

Тип кристаллической решетки

Стехиометрический состав

Область гомогенности

Тип соединения

металлическая

33 1/3 ат.% Та

31–37 ат.% Та

стехиометрическое

Итак, кристаллические вещества атомного и ионного строения не подчиняются закону постоянства состава. Нестехиометрический состав таких соединений обеспечивается образованием дефектов кристаллической структуры.

Вещества, построенные из молекул .

В качестве примера возьмем воду. Вода различных источников имеет разные свойства (например, плотность, табл. 1.1), т. к. имеет разный изотопный состав, в основном изменяется содержание протия и дейтерия. Присутствие тяжелой воды D 2 O можно считать примесью к обычной воде и предположить, что в отсутствие этой примеси свойства воды станут независимыми от способа и источника получения. Вещество вода, как и любое другое вещество, в силу содержания примесей, имеет переменный состав и в этом смысле не подчиняется закону постоянства состава.

Закон сохранения массы веществ

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции.

Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи.

В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн, 1905 г.), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия DE связана с увеличением его массы Dmсоотношением DE = Dm x c2 , где с - скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы на ~10-11 г и Dm практически не может быть измерено. В ядерных реакциях, где DЕ в ~106 раз больше, чем в химических реакциях, Dm следует учитывать.

Исходя из закона сохранения массы, можно составлять уравнения химических реакций и

по ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

Все индивидуальные химические вещества имеют постоянный качественный и количественный состав и определенное химическое строение, независимо от способа получения.

Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях.

Пример.

CuS - сульфид меди. m(Cu) : m(S) = Ar(Cu) : Ar(S) = 64: 32 = 2: 1

Чтобы получить сульфид меди (CuS) необходимо смешать порошки меди и серы в массовых отношениях 2: 1.

Если взятые количества исходных веществ не соответствуют их соотношению в химической формуле соединения, одно из них останется в избытке.

Например , если взять 3 г меди и 1 г серы, то после реакции останется 1 г меди, который не вступил в химическую реакцию. Вещества немолекулярного строения не обладают строго постоянным составом. Их состав зависит от условий получения.

Массовая доля элемента w (Э) показывает, какую часть составляет масса данного элемента от всей массы вещества: где n - число атомов; Ar(Э) - относительная атомная масса элемента; Mr - относительная молекулярная масса вещества.

w(Э) = (n x Ar(Э)) / Mr

Зная количественный элементный состав соединения можно установить его простейшую молекулярную формулу:

1. Обозначают формулу соединения Ax By Cz

2. Рассчитывают отношение X: Y: Z через массовые доли элементов:

w(A) = (х x Ar(А)) / Mr(AxByCz)

w(B) = (y x Ar(B)) / Mr(AxByCz)

w(C) = (z x Ar(C)) / Mr(AxByCz)

X = (w(A) x Mr) / Ar(А)

Y = (w(B) x Mr) / Ar(B)

Z = (w(C) x Mr) / Ar(C)

x: y: z = (w(A) / Ar(А)) : (w(B) / Ar(B)) : (w(C) / Ar(C))

3. Полученные цифры делят на наименьшее для получения целых чисел X, Y, Z.

4. Записывают формулу соединения.

Закон постоянства состава впервые сформулировал французский ученый-химик Жозеф Луи Пруст 1801 году. Этот закон утвердился в полемике Пруста с французским химиком Клодом Луи Бертолле. Последний считал, что направление химической реакции (состав ее продуктов) зависит не только от природы взаимодействующих веществ, но и от их относительных количеств. Абсолютизируя результаты своих экспериментальных исследований химических равновесий, он утверждал, что все вещества имеют переменный состав, который может меняться непрерывно от одного компонента к другому: например, оксиды получаются постепенным насыщением металла кислородом. В то же время Пруст, используя значительно более точные методы анализа, показал, что на самом деле таких непрерывных переходов нет. На примере карбоната меди, оксидов олова и сурьмы, сульфидов железа в разных степенях окисления, а также других веществ он доказал определенность составов соединений вне зависимости от способов их получения. Пруст писал: «От одного полюса земли до другого соединения имеют одинаковый состав и одинаковые свойства. Никакой разницы нет между оксидом железа из Южного полушария и Северного. Малахит из Сибири имеет тот же состав, как и малахит из Испании. Во всем мире есть лишь одна киноварь». Итак закон постоянства состава звучит следующим образом: «Качественный и количественный состав сложного вещества не зависит от способа его получения».

Закон простых кратных отношений

Исследуя химико-аналитически оксиды азота и углерода, этилен и метан, водородные соединения азота и фосфора, некоторый другие вещества, Дальтон в 1803 году установил закон кратных отношений: «Если два элемента образуют друг с другом несколько химических соединений, то на одну и ту же массу одного из них приходятся такие массы другого, которые относятся между собой как небольшие целые числа». Иными словами весовые отношения простых веществ, образующих сложное вещество, выражаются целыми числами типа 1:2:3… Закон кратных отношений, целочисленные отношения эквивалентных масс имели естественным выводом, что молекулы состоят из нескольких неделимых частиц - «атомов». Отсюда появилась возможность определения относительных атомных масс. Джон Дальтон ввел в химию и сам термин «атом» как мельчайшую частицу химического элемента. Атомы различных элементов, по Дальтону, имеют разную массу и тем отличаются друг от друга.

Закон простых объемных отношений

Французский ученый Жозеф Луи Гей-Люссак в 1802 году установил, что объем газа при постоянном давлении увеличивается пропорционально температуре. Позднее он вывел еще один закон: давление газа в замкнутом объеме пропорционально температуре. Свойства газов в конце XVIII - начале XIX века исследовали многие ученые. Еще до Гей-Люссака зависимость между объемом газа и температурой изучал французский физик Жак Александр Сезар Шарль. Но он вовремя не опубликовал полученные им данные, а Гей-Люссак же четко сформулировал закон, который в России называют законом Гей-Люссака, а в Англии и США - законом Шарля. А закон зависимости давления газа от абсолютной температуры наоборот в России известен под именем закона Шарля, а в Англии и США - как закон Гей-Люссака. Часто эти законы называют соответственно первым и вторым законами Гей-Люссака. В 1808 году Гей-Люссак совместно с немецким естествоиспытателем Александром Гумбольдтом сформулировал закон объемных отношений: «объемы вступающих в реакцию газов, находящихся при одинаковых условиях, относятся как целые числа». Например, 2 объема водорода соединяются с 1 объемом кислорода, давая 2 объема водяного пара. Сейчас мы записали бы стехиометрическое уравнение так: 2H 2 +O 2 =2H 2 O. Но в начале XVIII века еще не было разграничения понятия атома и молекулы. Гей-Люссак ничего не говорил о том, в виде каких частиц участвуют в реакциях те или иные газы.

ОСНОВНЫЕ ЗАКОНЫ ХИМИИ

Закон сохранения массы

Закон сохранения массы можно сформулировать так:

«масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции».

Открытие данного закона приписывают М.В. Ломоносову (1748 г. и подтвержден экспериментально им самим в 1756 г.), хотя он сам не приписывал себе авторство. В зарубежной литературе открытие данного закона приписывают А. Лавуазье (1789 г.)

Данный закон верен с большой точностью для всех химических реакций, так как дефект массы несоизмеримо мал

После открытия специальной теории относительности, масса приобрела новые свойства:

1. Масса объекта зависит от его внутренней энергии. При поглощении энергии масса растет, при ее выделении масса уменьшается. Особенно ощутимо изменение массы при ядерных реакциях. При химических реакциях изменение массы пренебрежительно мало – при тепловом эффекте реакции 100 кДж/моль изменение массы составит ~10 -9 г/моль, при нагревании железного утюга на 200° его масса возрастает на величину Δm/m~10 -12

2. Масса не является аддитивной величиной, т.е масса системы не равна сумме масс её составляющих, например аннигиляция электрона и позитрона, частиц имеющую массу покоя на фотоны, не имеющих массу покоя, масса дейтерия не равна сумме масс протона и нейтрона и т.д.

Из вышесказанного следует, что закон сохранения массы тесно связан с законом сохранения энергии, что объясняется специальной теорией относительности и выполняется с таким же ограничением - надо учитывать обмен системы энергией с внешней средой.

Закон эквивалентов

Открыт в результате химических опытов И. Рихтера в 1791-1798 гг

Первоначальная формулировка закона эквивалентов (термин "эквивалент" ввёл в 1767 г. Г. Кавендиш) была следующей: "Если одно и то же количество какой-либо кислоты нейтрализуется различными количествами двух оснований, то эти количества эквивалентны и нейтрализуются одинаковым количеством любой другой кислоты".

Проще говоря, химические соединения взаимодействуют не в произвольных, а в строго определённых количественных соотношения.

Однако, данный закон открыл вопрос о постоянстве состава вещества. Виднейший ученный того времени Клод Луи Бертолле предложил в 1803 г. теорию химического сродства, по средствам сил притяжения и зависящего от плотности вещества и его количества. Он отстаивал предположение о том, что элементный состав вещества может изменяться в некоторых пределах в зависимости от условий, в которых оно было получено. Постоянные отношения в соединениях, по Бертолле, могут иметь место лишь в случаях, когда при образовании таких соединений произошло значительное изменение плотности и, следовательно, сил сцепления. Так, газообразные водород и кислород соединяются в воду в постоянных отношениях, потому что вода - жидкость, обладающая значительно большей плотностью, чем исходные газы. Но если изменение плотности и сцепления при образовании соединения незначительно, образуются вещества переменного состава в широких границах отношений составных частей. Границами для образования таких соединений служат состояния взаимного насыщения составных частей. Учение Бертолле, отвергающее постоянство пропорций в химических соединениях было встречено с явным недоверием несмотря на высокий научный авторитет Бертолле. Однако большинство химиков-аналитиков, в том числе таких, как Клапрот и Вокелен, не решились открыто выступить с опровержением утверждений Бертолле. Лишь один, малоизвестный в то время мадридский химик Пруст не постеснялся выступить с критикой взглядов Бертолле и указать на его экспериментальные ошибки и неправильные выводы. После появления первой критической статьи Пруста (1801 г.) Бертолле счел нужным ответить последнему, отстаивая свои положения. Завязалась интересная и исторически весьма важная полемика, продолжавшаяся несколько лет (до 1808 г.) И хотя доводы Пруста, по-видимому, не вполне убедили Бертолле, который еще в 1809 г. признавал возможность существования соединений переменного состава, все химики встали на точку зрения Пруста, которому принадлежит, таким образом, заслуга экспериментального установления закона постоянства состава химических соединений.

Закон постоянства состава

Закон постоянства состава (постоянных отношений) открыл французкий ученый Жозеф Луи Пруст. И который стал одним из главных химических законов.

Закон постоянства состава - любое определенное химически чистое соединение, независимо от способа его получения, состоит из одних и тех же химических элементов, причём отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами.

Закон постоянства состава и стехиометричность соединений долгое время считались незыблемыми. Однако в начале XX в. И. С. Курнаков на основании своих исследований пришел к выводу о существовании нестехиометрических соединений, т. е. характеризующихся переменным составом. Еще  Д. И. Менделеев (1886 г.) на основе собственных наблюдений и накопившихся к тому времени многочисленных экспериментальных данных пришел к выводу, о наличие веществ с непостоянным составом и что эти соединения являются настоящими химическими соединениями, лишь находящимися в состоянии диссоциации. Н. С. Курнаков отмечал, что было бы ошибкой считать соединения переменного состава чем-то редким и исключительным. Соединения постоянного состава Н. С. Курнаков назвал дальтонидами в честь Д. Дальтона, широко применявшего атомно-молекулярную теорию к химическим явлениям. Нестехиометрические соединения были названы в честь К. Бертолле бертоллидами. По его представлениям, бертоллиды - это своеобразные химические соединения переменного состава, формой существования которых является не молекула, а фаза, то есть химически связанный огромный агрегат атомов. Классическая теория валентности не применима для соединений бертоллидного типа, поскольку они характеризуются переменной валентностью, изменяющейся непрерывно, а не дискретно, Перечисление синтезированных и известных соединений говорит о том, что большинство из них относятся к бертоллидному типу. В принципе любое твердое соединение, кроме веществ с молекулярной решеткой, является соединением переменного состава.

Бертоллиды, по Курнакову, представляют собой твердые растворы неустойчивых в свободном состоянии химических соединений постоянного состава. Охарактеризовав таким образом соединения постоянного и переменного состава, Курнаков пришел к выводу, что и Пруст, и Бертолле были правы в своих утверждениях.

Однако простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II) записывают в виде FeO (вместо более точной формулы Fe 1-x O).


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25