Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Химические методы получения водорода. Органическая химия

Химические методы получения водорода. Органическая химия

Однако все дело в том, что атомы водорода сцеплены со своими партнерами по этаноловой молекуле сильными химическими связями. Поэтому для расщепления этих молекул приходится пользоваться дорогостоящими катализаторами, содержащими ценные металлы платиновой группы. Стоимость самых эффективных катализаторов на основе родия доходит до 300 тысяч долларов за килограмм." />

Молекула этанола состоит из одного атома кислорода, двух углеродных атомов и шести атомов водорода. Это означает, что в принципе это соединение можно использовать в качестве сырья для промышленного производства водорода, который сейчас считается одним из самых перспективных энергоносителей для транспортных средств двадцать первого столетия.

Однако все дело в том, что атомы водорода сцеплены со своими партнерами по этаноловой молекуле сильными химическими связями. Поэтому для расщепления этих молекул приходится пользоваться дорогостоящими катализаторами, содержащими ценные металлы платиновой группы. Стоимость самых эффективных катализаторов на основе родия доходит до 300 тысяч долларов за килограмм.

Однако прогресс не стоит на месте. Профессор-химик университета штата Огайо Умит Озкан со своими аспирантами разработала альтернативный метод каталитического разложения этанола, который обойдется намного дешевле. Эти исследователи создали порошковый катализатор, для производства которого нужны совсем недорогие компоненты.

Его зерна состоят из окиси церия, кальция и кобальта, который они несут на своей поверхности. Он дает возможность извлекать из этанола не менее 90% его водородного содержимого. Остаток водорода идет на образование метана, который также можно использовать в качестве горючего газа. В ходе этих реакция образуется и углекислый газ, который можно отделить и подвергнуть секвестрации, чтобы не допустить его проникновения в атмосферу.

У нового катализатора есть два важных достоинства. Производство одного килограмма этого продукта обходится всего лишь в 9 долларов. К тому же он работает при сравнительно низких температурах, приблизительно 330 градусов Цельсия, что позволяет экономить энергию, идущую на нагрев реактора. Ученые из Огайо полагает, что с его помощью удастся добывать водород не только из этанола, но и из других жидких углеводородов.

    Группа ученых под руководством Матиаса Беллера (Matthias Beller) из Института Катализа им. Лейбница в Ростоке разработала новый катализатор, с помощью которого можно получать водород в процессе переработки био-спиртов – это спирты, выделяемые из биологического сырья. Представленный новый каталитический процесс обладает хорошей производительностью даже при протекании в относительно мягких условиях.

    На сегодняшний день порядка 80% мирового энергопотребления каким-либо образом оказывается связано со сжиганием нефтепродуктов, природного газа либо каменного угля. Но эти природные ресурсы являются невозобновляемыми, а кроме того, при их сгорании выделяются вещества, оказывающие негативное влияние на состояние окружающей среды. В связи с этим все большее внимание людей обращается в сторону альтернативного топлива – в частности, водорода, получаемого из биомассы.

    Получение водорода из этанола или других спиртов связано с определенными трудностями – для дегидрирования спиртов требуются активные катализаторы. Используемые сегодня каталитические процессы извлечения водорода из спиртов обладают большим недостатком: очень жесткие условия их реализации (температура процесса даже в присутствии сильных оснований должна быть выше 200°C). Но исследователям из Ростока удалось создать такой катализатор, который ускоряет целевую реакцию при гораздо более мягких условиях протекания реакции.

    Новинка демонстрирует недостижимые ранее результаты, она оказалось очень эффективной в дегидрировании спиртов с выделением водорода. Это первая в своем роде система, способная извлекать водород при температуре 100 градусов без оснований и других добавок.

    Сперва ученые провели испытания на модельном спирте – он относительно легко поддался отщеплению водорода (изопропанол). Затем новую систему проверили на этаноле – он более привлекателен для использования в качестве источника для альтернативного топлива, но его каталитическую конверсию, протекающую с выделением водорода достаточно сложно осуществить. Но несмотря на это, новая система продемонстрировала очень хорошую конверсию этанола в еще более мягких условиях, чем для изопропанола (60-80 С), что показывает десятикратное увеличение активности по сравнению с аналогичными каталитическими системами.

    Активный катализатор, благодаря которому протекает эта реакция, представляет собой генерируемый дигидридный рутениевый комплекс, стабилизированный тридентатным азотсодержащим лигандом, экранирующим атом рутения с трех сторон. При нагревании водород элиминируется из состава рутениевого комплекса, и координационно-ненасыщенная рутенийсодержащая частица, взаимодействуя с этанолом или бутанолом, отщепляет от молекулы спирта два атома водорода, регенерируя каталитический цикл.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2009, том 83, № 11, с. 2044-2048

ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ

УДК 542.941.7

НА НИКЕЛЕВОМ КАТАЛИЗАТОРЕ © 2009 г. Н. В. Лапин, А. Н. Редькин, В. С. Бежок, А. Ф. Вяткин

Российская академия наук,

Институт проблем технологии микроэлектроники и особочистых материалов, Черноголовка Московской области

E-mail: [email protected] Поступила в редакцию 15.07.2008 г.

Показана высокая эффективность никелевого катализатора на $Ю2-носителе в процессе низкотемпературной конверсии этанола с целью получения водорода. Установлено, что из одного моля спирта получается один моль водорода. Отмечено, что данный катализатор не стимулирует реакции ме-танирования и шифт-реакцию.

Вследствие высокой эффективности, высокой плотности тока и низкой рабочей температуры (обычно 80°С) топливные элементы с полимерной протонопроводящей мембраной рассматриваются в настоящее время в качестве одного из наиболее перспективных источников энергии для различных применений. При этом они перспективны и с точки зрения уменьшения выбросов в окружающую среду.

В качестве топлива для этих элементов требуются чистый водород или богатая водородом газовая смесь, которые нуждаются в накоплении и хранении, или могут непосредственно вырабатываться в устройствах, интегрированных непосредственно с топливным элементом. Вследствие отсутствия в настоящее время подходящих накопителей водорода и необходимой инфраструктуры его распределения каталитический реформинг подходящих углеводородов или спиртов с целью получения водорода привлекает все большее внимание. До последнего времени из-за доступности и легкости реформинга метанол рассматривался как основной кандидат для получения водорода. В научной литературе опубликованы неплохие результаты многочисленных исследований в этой области . Однако метанол обладает существенным недостатком - он токсичен. К тому же, вследствие его химической стойкости возникает проблема утилизации метанола.

В последнее время этанол привлекает все большее внимание как перспективный источник водорода для топливных элементов. К тому же, для этой цели возможно использование биоэтанола, который обладает рядом преимуществ: а) он легко доступен, дешев и является возобновляемым источником энергии, б) в противоположность метанолу он не токсичен, в) в отличие от природных углеводородов (бензин и др.) этанол не содержит примесей серосодержащих соедине-

ний, которые (являясь "каталитическими ядами") могут отравлять катализаторы, применяемые при реформинге этанола, и электрокатализаторы топливного элемента.

Изучение конверсии этанола проводилось на различных катализаторах: N1, Со, их сплавах с Си, благородных металлах на различных носителях . Реакция водно-парового реформинга этанола сильно эндотермична и максимальный выход водорода наблюдается при высоких температурах процесса, обычно выше 600°С. Высокая температура процесса способствует образованию большого количества оксида углерода, который отравляет катализатор анода топливного элемента. К тому же при высокой температуре конверсии возникает проблема охлаждения реформата, так как рабочая температура топливного элемента с полимерной мембраной составляет обычно 80°С. При высокой температуре реформинга возникает еще одна проблема - деактивация катализатора из-за высаживания углерода в виде графита или даже нанотрубок .

Катализатор, содержащий Си, предпочтителен для дегидрогенизации, приводящей к образованию больших количеств ацетальдегида . С другой стороны, катализаторы, содержащие N1 и Со, реформируют этанол более эффективно, но приводят к образованию значительного количества СН4 и стимулируют реакции гидрирования СО и СО2, снижающие выход водорода. Потеря активности из-за осаждения углерода представляет дополнительную проблему при использовании этих катализаторов. Катализаторы на основе Си менее эффективны из-за окисления активной фазы . Благородные металлы высокоэффективны при конверсии этанола , однако они дороги и маловероятно, что найдут широкое применение на практике. Природа носителя катализатора также играет роль в селективности образования водоро-

ПОЛУЧЕНИЕ ВОДОРОДА КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ ЭТАНОЛА

Рис. 1. Схема экспериментальной установки; 1 - реактор, 2 - печь, 3 - катализатор, 4 - перистальтический насос Патрикеева, 5 - ВРТ, 6 - хроматограф.

да. Кислые носители, такие как А1203 стимулируют дегидратацию, в то время как основные носители, такие как М§0, способствуют реакции дегидрогенизации . Лучшие каталитические характеристики с высокой селективностью по водороду и низкой селективностью по нежелательным побочным продуктам демонстрируют катализаторы на таких носителях, как Се02 и Zr02.

В данной работе исследуется известный, однако малоизученный процесс низкотемпературного реформинга этанола с целью получения водорода. Из литературы известно, что низкотемпературный реформинг этанола можно разделить на две стадии, хотя возможен и вариант совместного протекания реакций. На первой стадии этанол дегидрогенизируется с образованием аце-тальдегида и водорода. На второй стадии ацеталь-дегид расщепляется на метан и оксид углерода. Далее возможно протекание реакции между оксидом углерода и водой с образованием водорода и диоксида углерода. Катализаторы на основе N1 могут стимулировать эту реакцию . Особенность настоящей работы состоит в том, что в ней исследован процесс низкотемпературного реформинга этанола с участием никелевого катализатора, ранее разработанного нами для пиролитиче-ского синтеза углеродных нанотрубок .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования проводились на проточной установке (рис. 1), основным элементом которой является цилиндрический микрореактор с внутренним диаметром 6 мм и длиной 70 мм. Реактор помещался в печь с резистивным нагревом, температура которой регулировалась высокоточным регулятором температуры (ВРТ), точность регулировки составляла 1 К. Этанол подавался в реак-

тор перистальтическим насосом Патрикеева или из барботера, который продувался потоком аргона. Температура барботера равнялась комнатной температуре. Расход аргона измерялся ротаметром и изменялся в интервале 10-100 см3/мин. Температура реактора изменялась в пределах 50- 425°С. Загрузка катализатора находилась и интервале 0.06-0.08 г. (вместе с носителем). Высота слоя катализатора в реакторе составляла 40 мм. Поток этанола изменялся от величины 0.12 г/ч (барботер) до 1.5 г/ч (перистальтический насос).

Каталитический материал приготавливали по собственной разработанной методике. Для получения основы беззольную фильтровальную бумагу обрабатывали 20%-ным раствором тетраэток-сисилана в спирте, после чего выдерживали в эксикаторе над 10%-ным водным аммиаком. Процедуру повторяли несколько раз до достижения необходимого привеса массы. Далее материал отжигали на воздухе при 200°С в течение часа, затем температуру поднимали до 700°С и выдерживали в течение 2 ч. В результате волокна целлюлозы полностью выгорали, и получался материал, состоящий из спеченных пористых тонкостенных микротрубок из 8Ю2. Полученную "бумагу" из оксида кремния пропитывали раствором нитрата никеля и далее отжигали при 400°С. Приготовленный таким образом каталитический субстрат обладает развитой поверхностью и хорошей газопроницаемостью. В экспериментах использовали образцы с содержанием №0 25 мас. %.

Первые пробные эксперименты с водно-эта-нольной смесью (мольное отношение вода:этанол 1:1) показали, что на этом катализаторе реакция между монооксидом углерода и водой (шифт-ре-акция) не идет. Поэтому дальнейшие эксперименты проводились только со смесью азеотропного

ЛАПИН и др.

Рис. 2. Зависимость степени превращения этанола (конверсии - а) от температуры процесса. Поток этанола 0.12 г/ч. Загрузка катализатора 0.06 г.

состава этанол (96 мас. %) - вода (4 мас. %). Испарение этой смеси в барботере не приводило к изменению состава смеси, что обеспечивало ее постоянство в течение всего эксперимента. Анализ газовой фазы осуществлялся на газовом хроматографе "Цвет-500". Для этого использовались две колонки: с молекулярными ситами А5 (регистрация простых газов) длиной 2м и с полисорбом-1 длиной 2 м (регистрация этанола, воды и ацетальде-гида). Детектор - катарометр. ИК-спектры выходящих из реактора газов записывали на приборе 8рееогё М82.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Ранее с использованием ИК-спектроскопии в работе были качественно изучены особенности пиролиза паров этанола на катализаторе №0/8Ю2 в проточном реакторе при температуре 550°С. Установлено, что при отсутствии каталитического материала пары этанола, проходя сквозь реактор, практически не разлагаются. При наличии катализатора в ИК-спектре выходящих из реактора газов обнаруживается полоса при 1725 см-1, характерная для альдегидов, а также дублет при 2140 см-1, принадлежащий монооксиду углерода, и интенсивные острые пики при 3020 и 1305 см-1, относящиеся к метану. Кроме того, в спектре выходящих газов дополнительно появляется интенсивная полоса при 2350 см-1, относящаяся к диоксиду углерода.

Процесс пиролиза этанола при 550°С сопровождается интенсивным выделением углеродного волокнистого наноматериала (до 100% по отношению к массе катализатора). Осаждение угле-

Рис. 3. Зависимости доли не прореагировавшего этанола от времени контакта при 375 (1) и 325°С (2). Поток этанола 0.12 г/ч. Загрузка катализатора 0.06 г; сх и с0 - концентрация этанола на выходе из реактора и в исходной смеси соответственно.

рода приводит к дезактивации катализатора и процесс пиролиза быстро затормаживается. При снижении температуры скорость осаждения углерода резко уменьшается (практически до нуля при 350°С). Это обстоятельство позволяет существенно увеличить время работоспособности катализатора. Особенности пиролиза паров этанола на исследуемом катализаторе при температуре ниже 400°С исследованы количественно с использованием метода хроматографии.

На рис. 2 показана степень превращения спирта при различных температурах. Из рис. 2 видно, что процесс пироли

ДЬЯНКОВА Н.Я., ЛАПИН Н.В. - 2012 г.

  • НИКЕЛЕВЫЙ КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ИЗ СМЕШАННЫХ ОКСИДОВ ТИПА ГИДРОТАЛЬЦИТА, И ЕГО АКТИВНОСТЬ В МЕТАНИРОВАНИИ ОКСИДА УГЛЕРОДА

    ВЭЙХАНЬ ВАН, ЛИ БЯНЬ, ЦЮЦЗЮНЬ ЧЖУ, ЧЖЭНЬ ЛИ - 2014 г.

  • Сижу нынче утречком, никого не трогаю, примус починяю чай-кофий пью, новостя просматриваю. В новостях всё как обычно: «На Украине заметили, что санкции против России не действуют уже месяц» (похвальная оперативность), «Лавров прибыл в Швейцарию на переговоры по Сирии» (дай бог Сергею Викторовичу терпения), «ЦРУ готовит кибератаку против России» (ЦРУ на пакости всегда гораздо), «Дилан получил Нобелевскую премию» (почему бы и нет, Хуссейнычу же тоже дали)… И вдруг неожиданное - «Учёные создали наноматериал, вырабатывающий спирт из воздуха». Вот это новость так новость:

    Физики из США создали особые «наноиглы» из графена и меди, которые используют энергию электрического тока для превращения углекислого газа (СО2) в молекулы этанола - обычного спирта, говорится в статье, опубликованной в журнале ChemistrySelect.
    «Мы фактически случайно обнаружили, что данный материал работает так, как он работает. Изначально мы просто хотели реализовать первый шаг в этой реакции, но в ходе экспериментов мы быстро поняли, что катализатор осуществлял всю реакцию сам по себе, без вмешательства с нашей стороны», - заявил Адам Рондинон (Adam Rondinone) из Национальной лаборатории в Оак-Ридж (США).
    В последние годы ученые активно пытаются найти способ превращения атмосферного СО2 в биотопливо и другие полезные вещества. К примеру, в июле этого года физики из Чикаго представили необычную солнечную батарею из наноматериалов, которая напрямую использует энергию света для расщепления молекул углекислоты и производства угарного газа и водорода, из которых можно получать метан, этанол и другие виды биотоплива.
    Рондинон и его коллеги довели этот процесс до логического конца, пытаясь найти новые, более эффективные способы расщепления СО2 на угарный газ и кислород, не порождая при этом других побочных продуктов реакции, которые бесполезны или даже мешают получению биотоплива из углекислого газа.
    В качестве главного материала для этого катализатора учёные избрали медь, чьи электрохимические свойства идеально подходят для восстановления СО2 в угарный газ и другие виды молекул.
    Проблема заключается в том, что медные наночастицы и пластинки преобразуют СО2 не в одно вещество, а сразу в несколько десятков молекул, чьё присутствие и концентрации зависят от напряжения тока, который пропускается через катализатор. Это делает фактически невозможным промышленное использование подобных расщепителей СО2.
    Физики из Оак-Риджа решили эту проблему при помощи другого перспективного наноматериала – графена. Смяв листы графена в своеобразные «гармошки», учёные засеяли их складки наночастицами меди, что привело к тому, что молекулы СО2 расщеплялись в строго отведенных местах – на вершинах графеновых «наноигл».
    Это позволило американским исследователям гибко управлять тем, что происходит в ходе этого расщепления, и заставить СО2 превращаться почти всегда в обычный этиловый спирт – в среднем, около 60% молекул углекислоты превращается в этанол.
    Учёные пока не знают, что именно происходит в этих точках, однако они предполагают, что графеновые складки мешают полному восстановлению молекул СО2 и тем самым не дают им превратиться в этилен, этан и другие углеводороды, а также фокусируют и перенаправляют потоки электронов на наночастицы меди.
    Данная технология получения спирта из воздуха, по словам физиков, уже почти полностью готова к промышленному применению – стоимость подобных катализаторов невысока, и их можно производить в любых количествах. Как полагают учёные, их изобретение можно использовать для запасания излишков энергии, собираемых солнечными батареями или ветряками, в виде спирта, который можно затем применять как биотопливо для машин или в качестве рабочего тела для топливных ячеек.

    Всё это прекрасно, но вот только один вопросик имеется: «А водород-то откуда взялся?» Углекислый газ (двуокись углерода) это CO 2 (один атом углерода, два - кислорода), а спирт (этанол) это C 2 H 5 OH (один атом кислорода, два - углерода, и аж шесть - водорода). Откуда водород надыбали граждане физики? С чем мы тут дело имеем: с божественным актом творения водорода из святого духа, или доселе неизвестной ядерной реакцией? В общем, коллеги, пока физики не ответят на «водородный» вопрос, не торопитесь перегонные аппараты в утиль сдавать.

    А, чуть не забыл про заголовок новости - «Учёные создали наноматериал, вырабатывающий спирт из воздуха» . Ну, для журналистов всё едино, что воздух, что углекислый газ, у них, болезных, и волны падают крутым домкратом и стрелки осциллографов как мартовские коты скачут.

    Этиловый спирт или винный является широко распространённым представителем спиртов. Известно много веществ, в состав которых наряду с углеродом и водородом входит кислород. Из числа кислородсодержащих соединений мне интересен прежде всего класс спиртов.

    Этиловый спирт

    Физические свойства спирта . Этиловый спирт С 2 Н 6 О - бес­цветная жидкость со своеобразным запахом, легче воды (удель­ный вес 0,8), кипит при температуре 78°,3, хорошо растворяет многие неорганические и органические вещества. Спирт «ректи­фикат» содержит 96% этилового спирта и 4% воды.

    Строение молекулы спирта .Согласно валентности элементов, формуле С 2 Н 6 О соответствуют две структуры:


    Чтобы решить вопрос о том, какая из формул соответствует спирту в действительности, обратимся к опыту.

    Поместим в пробирку со спиртом кусочек натрия. Тотчас начнётся реакция, сопровождающаяся выделением газа. Нетрудно установить, что этот газ - водород.

    Теперь поставим опыт так, чтобы можно было определить, сколько атомов водорода выделяется при реакции из каждой мо­лекулы спирта. Для этого в колбу с мелкими кусочками натрия (рис. 1) прибавим по каплям из воронки определённое количе­ство спирта, например 0,1 грамм-молекулы (4,6 грамма). Выделяю­щийся из спирта водород вытесняет воду из двугорлой склянки в измерительный цилиндр. Объём вытесненной воды в цилиндре соответствует объёму выделившегося водорода.

    Рис.1. Количественный опыт получения водорода из этилового спирта.

    Так как для опыта была взята 0,1 грамм-молекулы спирта, то водорода удаётся получить (в пересчёте на нормальные условия) около 1,12 литра. Это означает, что из грамм-молекулы спирта нат­рий вытесняет 11,2 литра , т.е. половину грамм-молекулы, иначе го­воря 1 грамм-атом водорода. Следовательно, из каждой молекулы спирта натрием вытесняется только один атом водорода.

    Очевидно, в молекуле спирта этот атом водорода находится в особом положе­нии по сравнению с осталь­ными пятью атомами водо­рода. Формула (1) не даёт объяснения такому факту. Согласно ей, все атомы водо­рода одинаково связаны с атомами углерода и, как нам известно, не вытесняются ме­таллическим натрием (нат­рий хранят в смеси углеводородов - в керосине). Наоборот, формула (2) отражает наличие одного атома, находя­щегося в особом положении: он соединён с углеродом через атом кислорода. Можно заключить, что именно этот атом водорода связан с атомом кислорода менее прочно; он оказывается более подвижным и вытесняется натрием. Следовательно, структурная формула этилового спирта:


    Несмотря на большую подвижность атома водорода гидроксильной группы по сравнению с другими атомами водорода, этиловый спирт не является электролитом и в водном растворе не диссоциирует на ионы.


    Чтобы подчеркнуть, что в молекуле спирта содержится гидроксильная группа - ОН, соединённая с углеводородным радика­лом, молекулярную формулу этилового спирта пишут так:

    Химические свойства спирта . Выше мы видели, что этиловый спирт реагирует с натрием. Зная строение спирта, мы можем эту реакцию выразить уравнением:

    Продукт замещения водорода в спирте натрием носит назва­ние этилата натрия. Он может быть выделен после реакции (пу­тём испарения избытка спирта) в виде твёрдого вещества.

    При поджигании на воздухе спирт горит синеватым, еле за­метным пламенем, выделяя много тепла:

    Если в колбе с холодильником нагревать этиловый спирт с галогеноводородной кислотой, например с НВг (или смесью NаВг и Н 2 SО 4 , дающей при реакции бромистый водород), то будет от­гоняться маслянистая жидкость - бромистый этил С 2 Н 5 Вг:

    Эта реакция подтверждает наличие гидроксильной группы в молекуле спирта.

    При нагревании с концентрированной серной кислотой в каче­стве катализатора спирт легко дегидратируется, т. е. отщепляет воду (приставка «де» указывает на отделение чего-либо):

    Эта реакция используется для получения этилена в лаборатории. При более слабом нагревании спирта с серной кислотой (не выше 140°) каждая молекула воды отщепляется от двух молекул спирта, вследствие чего образуется диэтиловый эфир - летучая легко воспламеняющаяся жидкость:

    Диэтиловый эфир (иногда называемый серным эфиром) при­меняется в качестве растворителя (чистка тканей) и в медицине для наркоза. Он относится к классу простых эфиров - органи­ческих веществ, молекулы которых состоят из двух углеводород­ных радикалов, соединённых посредством атома кислорода: R - О - R1

    Применение этилового спирта . Этиловый спирт имеет большое практическое значение. Много этилового спирта расходуется на получение синтетического каучука по способу академика С. В. Лебедева. Пропуская пары этилового спирта через специальный катализатор, получают дивинил:

    который затем может полимеризоваться в каучук.

    Спирт идёт на выработку красителей, диэтилового эфира, раз­личных «фруктовых эссенций» и ряда других органических ве­ществ. Спирт как растворитель применяется для изготовления парфюмерных продуктов, многих лекарств. Растворяя в спирте смолы, готовят различные лаки. Высокая теплотворная способность спирта обусловливает применение его в качестве горючего (автомобильного топлива = этанола).

    Получение этилового спирта . Мировое производство спирта измеряется миллионами тонн в год.

    Распространённым способом получения спирта является бро­жение сахаристых веществ в присутствии дрожжей. В этих низ­ших растительных организмах (грибках) вырабатываются особые вещества - ферменты, которые служат биологическими катали­заторами реакции брожения.

    В качестве исходных материалов в производстве спирта берут семена злаков или клубни картофеля, богатые крахмалом. Крах­мал с помощью солода, содержащего фермент диастаз, сперва превращают в сахар, который затем сбраживают в спирт.

    Учёные много работали над тем, чтобы заменить пищевое сырьё для получения спирта более дешёвым непищевым сырьём. Эти по­иски увенчались успехом.

    В последнее время в связи с тем, что при крекинге нефти образуется много этилена, стали

    Реакция гидратации этилена (в присутствии серной кислоты) была изучена ещё А. М. Бутлеровым и В. Горяиновым (1873), который предсказал и её промышленное значение. Разработан и внедрен в промышленность также метод прямой гидратации этилена пропусканием его в смеси с парами воды над твердыми катализаторами. Получение спирта из этилена очень экономично, так как этилен входит в состав газов крекинга нефти и других промышленных газов и, следовательно, является широкодоступным сырьем.

    Другой способ основан на использовании в качестве исходного продукта ацетилена. Ацетилен подвергается гидратации по реакции Кучерова, а образующийся уксусный альдегид каталитически восстанавливают водородом в присутствии никеля в этиловый спирт. Весь процесс гидратации ацетилена с последующим восстановлением водородом на никелевом катализаторе в этиловый спирт может быть представлен схемой.

    Гомологический ряд спиртов

    Кроме этилового спирта, известны и другие спирты, сходные с ним по строению и свойствам. Все они могут рассматриваться как производные соответствующих предельных углеводородов, в молекулах которых один атом водорода заменён гидроксильной группой:

    Таблица

    Углеводороды

    Спирты

    Температура кипения спиртов в º С

    Метан СН 4 Метиловый СН 3 ОН 64,7
    Этан С 2 Н 6 Этиловый С 2 Н 5 ОН илиСН 3 - СН 2 - ОН 78,3
    Пропан С 3 Н 8 Пропиловый С 4 Н 7 ОН или СН 3 - СН 2 - СН 2 - ОН 97,8
    Бутан С 4 Н 10 Бутиловый С 4 Н 9 ОН илиСН 3 - СН 2 - СН 2 - ОН 117

    Будучи сходны по химическим свойствам и отличаясь друг от друга по составу молекул на группу атомов СН 2 , эти спирты со­ставляют гомологический ряд. Сравнивая физические свойства спиртов, мы в этом ряду, так же как и в ряду углеводородов, на­блюдаем переход количественных изменений в изменения качест­венные. Общая формула спиртов данного ряда R - ОН (где R - углеводородный радикал).

    Известны спирты, в молекулы которых входит несколько гидроксильных групп, например:

    Группы атомов, обусловливающие характерные химические свойства соединений, т. е. их химическую функцию, называются функциональными группами.

    Спиртами называются органические вещества, моле­кулы которых содержат одну или несколько функциональных гидроксильных групп, соединённых с углеводородным радикалом .

    По своему составу спирты отличаются от углеводородов, соот­ветствующих им по числу углеродных атомов, наличием кисло­рода (например, С 2 Н 6 и С 2 Н 6 О или С 2 Н 5 ОН). Поэтому спирты можно рассматривать как продукты частичного окисления угле­водородов.

    Генетическая связь между углеводородами и спиртами

    Произвести непосредственное окисление углеводорода в спирт довольно трудно. Практически проще это сделать через галогенопроизводное углеводорода. Например, чтобы получить этиловый спирт, исходя из этана С 2 Н 6 , можно сначала получить бромистый этил по реакции:


    а затем бромистый этил превратить в спирт нагреванием с водой в присутствии щёлочи:


    Щёлочь при этом нужна, чтобы нейтрализовать образующийся бромистый водород и устранить возможность реакции его со спиртом, т.е. сдвинуть эту обратимую реакцию вправо.

    Подобным же образом метиловый спирт может быть получен по схеме:


    Таким образом, углеводороды, их галогенопроизводные и спирты находятся между собой в генетической связи (связи по происхождению).