Макияж. Уход за волосами. Уход за кожей

Макияж. Уход за волосами. Уход за кожей

» » Метод вычисления оптимальных стратегий. Решение игр в чистых стратегиях

Метод вычисления оптимальных стратегий. Решение игр в чистых стратегиях

Матричная игра двух игроков с нулевой суммой может рассматриваться как следующая абстрактная игра двух игроков.

Первый игрок имеет m стратегий i = 1,2,...,m , второй имеет n стратегий j = 1,2,...,n . Каждой паре стратегий (i , j ) поставлено в соответствие число а ij , выражающее выигрыш игрока 1 за счёт игрока 2, если первый игрок примет свою i - ю стратегию, а 2 – свою j -ю стратегию.

Каждый из игроков делает один ход: игрок 1 выбирает свою i -ю стратегию (i = ), 2– свою j -ю стратегию (j =
), после чего игрок 1 получает выигрыш а ij за счёт игрока 2 (если а ij < 0, то это значит, что игрок 1 платит второму сумму |а ij |). На этом игра заканчивается.

Каждая стратегия игрока i =
;
j =
часто называется чистой стратегией.

Если рассмотреть матрицу

А =

то проведение каждой партии матричной игры с матрицей А сводится к выбору игроком 1 i -й строки, а игроком 2 j -го столбца и получения игроком 1 (за счёт игрока 2) выигрыша а ij .

Главным в исследовании игр является понятие оптимальных стратегий игроков. В это понятие интуитивно вкладывается такой смысл: стратегия игрока является оптимальной, если применение этой стратегии обеспечивает ему наибольший гарантированный выигрыш при всевозможных стратегиях другого игрока. Исходя из этих позиций, игрок 1 исследует матрицу выигрышей А следующим образом: для каждого значения i (i =
) определяется минимальное значение выигрыша в зависимости от применяемых стратегий игрока 2

а ij (i =
)

т.е. определяется минимальный выигрыш для игрока 1 при условии, что он примет свою i -ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия i = i о , при которой этот минимальный выигрыш будет максимальным, т.е. находится


а ij =
=(1)

Определение . Число , определённое по формуле (1) называется нижней чистой ценой игры и показывает, какой минимальный выигрыш может гарантировать себе игрок 1, применяя свои чистые стратегии при всевозможных действиях игрока 2.

Игрок 2 при оптимальном своём поведении должен стремится по возможности за счёт своих стратегий максимально уменьшить выигрыш игрока 1. Поэтому для игрока 2 отыскивается

а ij

т.е. определяется max выигрыш игрока 1, при условии, что игрок 2 применит свою j -ю чистую стратегию, затем игрок 2 отыскивает такую свою j = j 1 стратегию, при которой игрок 1 получит min выигрыш, т.е. находит


a ij =
=(2).

Определение . Число , определяемое по формуле (2), называется чистой верхней ценой игры и показывает, какой максимальный выигрыш за счёт своих стратегий может себе гарантировать игрок 1.

Другими словами, применяя свои чистые стратегии игрок 1 может обеспечить себе выигрыш не меньше , а игрок 2 за счёт применения своих чистых стратегий может не допустить выигрыш игрока 1 больше, чем .

Определение . Если в игре с матрицей А =, то говорят, что эта игра имеет седловую точку в чистых стратегиях и чистую цену игры

 = =.

Седловая точка – это пара чистых стратегий (i о , j о ) соответственно игроков 1 и 2, при которых достигается равенство =. В это понятие вложен следующий смысл: если один из игроков придерживается стратегии, соответствующей седловой точке, то другой игрок не сможет поступить лучше, чем придерживаться стратегии, соответствующей седловой точке. Математически это можно записать и иначе:


где i , j – любые чистые стратегии соответственно игроков 1 и 2; (i о , j о ) – стратегии, образующие седловую точку.

Таким образом, исходя из (3), седловой элемент
является минимальным в i о -й строке и максимальным в j о -м столбце в матрице А. Отыскание седловой точки матрицы А происходит следующим образом: в матрице А последовательно в каждой строке находят минимальный элемент и проверяют, является ли этот элемент максимальным в своём столбце . Если да, то он и есть седловой элемент, а пара стратегий, ему соответствующая, образует седловую точку. Пара чистых стратегий (i о , j о ) игроков 1 и 2, образующая седловую точку и седловой элемент
, называется решением игры . При этом i о и j о называются оптимальными чистыми стратегиями соответственно игроков 1 и 2.

Пример 1

Седловой точкой является пара (i о = 3;j о = 1), при которой === 2.

Заметим, что хотя выигрыш в ситуации (3;3) также равен 2 ==, она не является седловой точкой, т.к. этот выигрыш не является максимальным среди выигрышей третьего столбца.

Пример 2

Из анализа матрицы выигрышей видно, что
, т.е. данная матрица не имеет седловой точки. Если игрок 1 выбирает свою чистую максиминную стратегию i = 2, то игрок 2, выбрав свою минимаксную j = 2, проиграет только 20. В этом случае игроку 1 выгодно выбрать стратегию i = 1, т.е. отклониться от своей чистой максиминной стратегии и выиграть 30. Тогда игроку 2 будет выгодно выбрать стратегию j = 1, т.е. отклониться от своей чистой минимаксной стратегии и проиграть 10. В свою очередь игрок 1 должен выбрать свою 2-ю стратегию, чтобы выиграть 40, а игрок 2 ответит выбором 2-й стратегии и т.д.

Рассмотрим пример. Пусть дана матрица игры (4):

Требуется найти нижнюю цену игры α, верхнюю цену игры β и минимаксные стратегии и проверить, являются ли они устойчивыми. Решение. Из анализа дополнительных столбца и строки получаем: α = 5, β = 5. Максимин равен минимаксу! Случай особый. Что же из этого следует? Возьмем пару минимаксных стратегий: К 2 и С 3 . Если оба держатся этих стратегий, то выигрыш будет равен 5. Теперь, допустим, мы узнали о поведении противника. Что будем делать? А ничего! Мы по-прежнему будем держаться стратегии К 2 , потому что любое отступление от нее нам невыгодно. Знаем мы или не знаем о поведении противника - все равно будем держаться стратегии К 2 ! То же относится и к «синим» - им нет смысла менять свою стратегию С 3 . В данном примере пара стратегий К 2 и С 3 устойчива, т. е. представляет собой положение равновесия и дает решение игры. Почему так получилось? Потому что в матрице имеется особый элемент 5; он является минимальным в своей строке и одновременно максимальным в своем столбце. Такой элемент называется седловой точкой . Если матрица имеет седловую точку (т. е. нижняя цена игры равна верхней), то игра имеет решение в чистых стратегиях: это - пара стратегий, пересекающихся в седловой точке. Сама же седловая точка дает цену игры - в нашем примере она равна 5. Класс игр, имеющих седловую точку, имеет большое значение в теории игр. В частности, доказано, что если по правилам игры каждый из игроков знает результат всех предыдущих ходов, как своих, так и противника (так называемая игра с полной информацией), то игра имеет седловую точку и, значит, имеет решение в чистых стратегиях . Примерами игр с полной информацией могут служить: шахматы, шашки, «крестики и нолики» и т. п. Приведем пример игры с полной информацией, решение которой легко найти. Два игрока - К и С - поочередно кладут одинаковые монеты на круглый стол. Положение каждой монеты выбирается произвольно, лишь бы она не перекрывалась другими. Выигрывает тот из игроков, который положит монету последним (когда места для других уже не остается). Стоит немножко подумать, чтобы убедиться, что исход этой игры всегда предрешен и что существует вполне определенная стратегия, гарантирующая выигрыш тому из игроков, который кладет монету первым (пусть это будет К). А именно К должен положить первую монету в центр стола, а далее на каждый ход С отвечать в точности симметричным относительно центра стола ходом! Бедный С может при этом вести себя как угодно, спасения ему все равно нет... Очевидно, такая игра имеет смысл только для тех, кто не знает решения. Любопытно, что совершенно так же обстоит дело и с такой популярной игрой, как шахматы! Эта игра имеет смысл только до тех пор, пока не найдено ее решение. Теоретически доказано, что решение существует и исход шахматной игры в сущности предрешен: если каждая сторона будет пользоваться своей оптимальной стратегией, то игра либо всегда будет кончаться выигрышем белых, либо всегда выигрышем черных, либо всегда ничьей! Но чем же именно? Мы пока этого не знаем, так как число возможных стратегий слишком велико, чтобы можно было построить матрицу шахматной игры и найти в ней седловую точку... Наверное, любители шахмат заинтересованы в том, чтобы шахматная игра была решена еще не скоро. Заметим в заключение, что седловых точек в матрице может быть не одна, а несколько; тог да решений игры в чистых стратегиях существует столько, сколько имеется седловых точек. Каждое из них дает выигрыш, равный цене игры.

Различают стратегии чистые и смешанные. Чистая стратегия
первого игрока (чистая стратегия
второго игрока) – это возможный ход первого (второго) игрока, выбранный им с вероятностью, равной 1.

Если первый игрок имеет m стратегий, а второй – n стратегий, то для любой пары стратегий первого и второго игроков чистые стратегии можно представить в виде единичных векторов. Например, для пары стратегий
,
чистые стратегии первого и второго игроков запишутся в виде:
,
. Для пары стратегий ,чистые стратегии можно записать в виде:

,

.

Теорема : В матричной игре нижняя чистая цена игры не превосходит верхней чистой цены игры, т. е.
.

Определение: Если для чистых стратегий ,игроковA и В соответственно имеет место равенство
, то пару чистых стратегий (,) называют седловой точкой матричной игры, элементматрицы, стоящий на пересеченииi-й строки и j-го столбца – седловым элементом платежной матрицы, а число
- чистой ценой игры.

Пример: Найти нижнюю и верхнюю чистые цены, установить наличие седловых точек матричной игры

.

Определим нижние и верхние чистые цены игры: , ,
.

В данном случае имеем одну седловую точку (А 1 ; В 2), а седловой элемент равен 5. Этот элемент является наименьшим в 1-й строке и наибольшим во 2-м столбце. Отклонение игрока А от максиминной стратегии А 1 ведет к уменьшению его выигрыша, а отклонение игрока В от минимаксной стратегии В 2 ведет к увеличению его проигрыша. Иными словами, если в матричной игре имеется седловой элемент, то наилучшими для игроков являются их минимаксные стратегии. И эти чистые стратегии, образующие седловую точку и выделяющие в матрице игры седловой элемент a 12 =5, есть оптимальные чистые стратегии исоответственно игроков А и В.

Если же матричная игра не имеет седловой точки, то решение игры затрудняется. В этих играх
. Применение минимаксных стратегий в таких играх приводит к тому, что для каждого из игроков выигрыш не превышает , а проигрыш - не меньше . Для каждого игрока возникает вопрос увеличения выигрыша (уменьшение проигрыша). Решение находят, применяя смешанные стратегии.

Определение: Смешанной стратегией первого (второго) игрока называется вектор
, где
и
(
, где
и
).

Вектор p(q) означает вероятность применения i-й чистой стратегии первым игроком (j-й чистой стратегии вторым игроком).

Поскольку игроки выбирают свои чистые стратегии случайно и независимо друг от друга, игра имеет случайный характер и случайной становится величина выигрыша (проигрыша). В таком случае средняя величина выигрыша (проигрыша) – математическое ожидание – является функцией от смешанных стратегий р, q:

.

Определение: Функция f(р, q) называется платежной функцией игры с матрицей
.

Определение: Стратегии
,
называются оптимальными, если для произвольных стратегий
,
выполняется условие

Использование в игре оптимальных смешанных стратегий обеспечивает первому игроку выигрыш, не меньший, чем при использовании им любой другой стратегии р; второму игроку – проигрыш, не больший, чем при использовании им любой другой стратегии q.

Совокупность оптимальных стратегий и цены игры составляет решение игры.

Если в игре каждый из противников применяет одну и ту же стратегию, то про эту игру говорят, что она происходит в чистых стратегиях, а стратегии игроков А и В будут называться чистыми стратегиями .В антагонистической игре пара стратегий называется равновесной (устойчивой), если ни одному из игроков невыгодно отступать от своих стратегий.Применять чистые стратегии имеет смысл, если игроки знают о действиях противника. Если этого нет, то идея равновесия нарушается и игра может вестись как получится.Стратегии А1 В1 – устойчивы по отношению к информации о поведении противника.Признаком устойчивости пары стратегий это равенство верхней и нижней цены игры. И случай А1 В1 будет

ν = α = β. ν > 0, то игрок А будет в выигрыше, если ν < 0, то в выигрыше игрок В. Если ν = 0, в этом случае игра справедлива для обоих игроков. Не все матричные игры имеют седловые точки.

Теорема: каждая игра с полной информацией имеет седловую точку и следовательно решает в чистых стратегиях, т.е. имеется пара устойчивых стратегий, дающих устойчивый выигрыш равный ν.Если матрица не имеет седловую точку, то цена игры лежит α<ν<β. Это означает, что первый игрок, используя максиминный принцип, обеспечит себе выигрыш не менее, чем α. А второй игрок придерживаясь минимаксного подхода обеспечит себе проигрыш не больше верхней цены игры. Игра будет оптимальна, если оба игрока будут применять смешанные стратегии.Случайная величина, значениями которой являются чистые стратегии, называется смешанной стратегией для этого игрока.

Задать смешанную стратегию это значит задать те вероятности, с которыми используются чистые стратегии.

S A = || p 1 , p 2 …. p m || ,S B = || q1, q2 …. q m || , A: ∑ pi = 1 ,B: ∑ qi = 1

Игра может повторяться несколько раз, но в каждой партии игрок придерживается смешанной стратегии, где чистые стратегии придерживаются вероятности p i и q j .

Модель смешанные стратегий отличается от модели чистых стратегий. В случае смешанных стратегий тактика поведения игроков будет более гибкой, т.к. игроки знают заранее какую чистую стратегию они применят.

Предположим что и игрок А и игрок В придерживаются смешанной стратегии. Необходимо определить А: ∑∑ a ij p i q j

Для игрока В ожидаемый проигрыш равен ожидаемому выигрышу игрока А. Выигрыш первого игрока и средний проигрыш второго игрока равны друг другу.

18.Методы решения конечной игры двух лиц порядка m*n.

Предположим, что все элементы платёжной матрицы 0≤aij. Тогда α≤ν≤β. Согласно основной теореме матричных игр, любая матричная игра имеет 2 оптимальные смешанные стратегии.

S A = (p 1 , p 2 , … , p n)

S B = (p 1 , p 2 , … , p n)

Решаем игру для игрока А, при этом предполагая что игрок В использует только чистые стратегии. Тогда

a 11 p 1 + a 21 p 2 + … + a m1 p m ≥ ν: B 1

a 12 p 1 + a 22 p 2 + … + a m2 p m ≥ ν: B 2 (1)

a 1n p 1 + a 2n p 2 + … + a mn p m ≥ ν: B n

X 1 = P 1 /ν , X 2 = P 2 /ν … X m = P m /ν

a 11 X 1 … + a m1 p m ≥ 1

a 1n X 1 … + a m1 p m ≥ 1 (2)

p 1 +p 2 +…+p m =1

X 1 +X 2 +…+X m = 1/ν (3)

L(x) = X 1 +X 2 +…+X m -> min (4)

Определим задачу линейного программирования.

ν = 1/(X 1 0 +X 2 0 …X m 0) (5)

P1 = X 1 0 *ν опт

p2 = X 2 0 *ν опт (6)

min L(x) = ∑x i

∑a ij: 1≤x i (7) (прямая задача)

0≤x i (i=1,2..)

a 11 q 1 + a 21 q 2 + … + a m1 q m < ν: A 1

a 21 q 1 + a 22 q 2 + … + a m2 q m < ν: A 2 (8)

a m1 q 1 + a m2 q 2 + … + a mn q m < ν: A m

Y 1 = q 1 /ν , Y 2 = q 2 /ν … Y m = q m /ν

q 1 +q 2 +…+q n =1

y 1 +y 2 +…+y n =1/ν

L(y)=∑y j -> max

∑a ij , y i ≤1 (i=1,2…) (9) (двойственная задача)

y 1 0 +y 2 0 …y m 0 = 1/ν опт

ν опт = 1/∑y m 0

Q1 = y 1 0 *ν опт

q2 = y 2 0 *ν опт

ν=1/∑x i = 1/∑y i = 1/min L(x) = 1/ max L(y) (11)

B 1 B 2 B 3 α i
A 1
A 2
A 3
β j

1) α = 1, β = 3

2) Нет упрощений.

L(x)=x 1 +x 2 +x 3 => min

x 1 +3x 2 +x 3 >= 1

2x 1 +x 2 +x 3 >=1

3x 1 +x 2 +x 3 >=1

x 1 =2/9, x 2 =2/9, x 3 =1/9

ν=1/(2/9+2/9+1/9)=9/5

p 1 =x 1 *ν=2/5

S A =(2/5, 2/5, 1/5)

двойственная задача

L(y) = y 1 +y 2 +y 3 => max

y 1 +2y 2 +3y 3 ≤ 1 y 1 =2/9

3y 1 +y 2 +y 3 ≤1 => y 2 =2/9 max L(y) = 5/9

y 1 +3y 2 +y 3 ≤1 y 3 =1/9

ν=1/(2/9+2/9+1/9)=9/5

q 1 =y 2 *ν=(2/9)*(9/5)=2/5

q 2 =(2/9)*(9/5)=2/5

q 3 =(1/9)*(9/5)=1/5

S B =(2/5, 2/5, 1/5)

Задача mxn сводится к задаче линейного программирования.

Приближённый метод решения матричных игр mxn (Браун-Робинсон).

Игрок А и игрок В поочерёдно применяют чистые стратегии. Каждый игрок пытается увеличить свой выигрыш, используя максиминые или минимаксные подходы. Минимизируется (максимизируется) не средний выигрыш, а накопленный. В теории показывается, что такой метод неизбежно даст нам оптимальный выигрыш и оптимальные смешанные стратегии.



В 1 В 2 В 3
А 1
А 2
А 3
3 * 8 * 9 * 36 *
3 * 4 * 12 * 13 *
7 *
1 *
3 *
4 *
6 *
9 *
10 *
12 *
34 *

«Чистые» стратегии

Мы уже знакомы с косяками. Однако, что будет, если из цепочки какой-либо стратегии убрать косяки? Мы получим «чистую стратегию». Чистыми стратегиями являются те, в цепочке действий которых, начиная от самого корня и до результативной части, отсутствуют неэффективные подстратегии (косяки), а об этом может зачастую свидетельствовать только наличие всех звеньев в сознании.

Конечно с точки зрения всех возможных исходов применения стратегии нам сложно говорить о самой-самой эффективной, так как мы можем просто не обладать определенным опытом, а следовательно и определенными промежуточными стратегиями, однако именно со стороны нашего опыта, стратегия должна быть максимально эффективной.

Понятие чистых стратегий также является одним из ключевых в данных материалах, поэтому приведу пример:

Вечер. Вы в родном районе спешите домой. Молоко убегает. Пролетая мимо «подозрительного типа каких-много» вы слышите в свой адрес «Эй, ты, [вырезано цензурой]. Ты тут не ходи, снег башка попадет!».

Что вы сделаете? Вариантов может быть много. Кто-то пойдет выяснять отношения, кто-то испугается и ускорит шаг, кто-то крикнет что-то в ответ. Однако, давайте подумаем, какой в данном случае является чистая стратегия поведения?

Незнакомый вам человек, что-то кричит вам на улице. У вас есть свои дела, по которым вы собственно и идете. Судя по тексту, позитивные выгоды для вас от общения с этим человеком маловероятны. Логичный вывод: спокойно пойти дальше по своим делам. Обращаю внимание на то, что именно «спокойно», без тени негативных эмоций, а со здоровым безразличием к происходящему. Как много людей так поступят? Предполагаю, что подавляющее меньшинство. Почему?

Потому что большинство людей имеет целую прослойку подсознательных стратегий, привязанных в более нижних слоях к самосохранению, в частности таковыми могут быть: «Всегда отвечать на грубость грубостью», «Если кто-то говорит гадость, то надо бежать», «Если кто-то грубит - надо набить ему лицо», «Если кто-то грубит, значит есть опасность», и тому подобное в разных вариациях. Конечно не все предпримут какие-то активные действия, но эмоционально это заденет почти всех. И это косяк.

Чистые же стратегии всегда эмоционально нейтральны или позитивны, и это заложено в вашем мозге, остается только этим воспользоваться.

Немного про чистые стратегии вы можете прочитать в заметках «Почему именно чистые стратегии?» и «Хаус, Хопкинс, и прочее».

Из книги Стратегии гениев. Альберт Эйнштейн автора Дилтс Роберт

Стратегии 1. Определение термина “стратегия”:а) Происходит от греческого слова “strategos”, означающего: “военачальник”,“наука, искусство ведения войны”,“искусство руководства общественной, политической борьбой”.б) Детальный план достижения цели или выгодного

Из книги Стратегии гениев (Аристотель Шерлок Холмс Уолт Дисней Вольфганг Амадей Моцарт) автора Дилтс Роберт

Из книги Ты умеешь хорошо учиться?! Полезная книга для нерадивых учеников автора Карпов Алексей

СТРАТЕГИИ Твоя учеба пойдет на совершенно другом уровне качества, если ты подумаешь и выберешь стратегию действий.Стратегия - это общий план. Это общая линия с учетом реальных условий. Это цели, сроки, учет непредсказуемости и многообразия… Это само ощущение пульса

Из книги Стратегия разума и успеха автора Антипов Анатолий

Из книги Эмоциональный интеллект автора Гоулман Дэниел

Коэффициент умственного развития и эмоциональный интеллект: чистые типы Коэффициент умственного развития и эмоциональный интеллект - это не находящиеся в оппозиции, а скорее отдельные компетенции. Все мы сочетаем интеллект с остротой переживаний; люди с высоким

Из книги 12 христианских верований, которые могут свести с ума автора Таунсенд Джон

Правильные намерения или чистые помыслы Правильное намерение - это решение поступать правильно. Мы выбираем хороший, угодный Богу поступок, обычно не задумываясь о том, сильно ли мы хотим его совершить. Просто делаем это - и все. Многие евангелические проповедники

Из книги Вступая в жизнь: Сборник автора Автор неизвестен

Рудольф Иванович АБЕЛЬ: «ПОМНИТЕ, КАК ГОВОРИЛ ДЗЕРЖИНСКИЙ: «ЧИСТЫЕ РУКИ, ХОЛОДНАЯ ГОЛОВА И ГОРЯЧЕЕ СЕРДЦЕ...» Более тридцати лет Рудольф Иванович Абель отдал работе в советской разведке. Он был награжден орденом Ленина, двумя орденами Красного Знамени, орденом Трудового

Из книги Homo Sapiens 2.0 [Человек Разумный 2.0 http://hs2.me] автора Sapiens Homo

Стратегии

Из книги Homo Sapiens 2.0 автора Sapiens 2.0 Homo

"Чистые" стратегии Мы уже знакомы с косяками. Однако, что будет, если из цепочки какой-либо стратегии убрать косяки? Мы получим «чистую стратегию». Чистыми стратегиями являются те, в цепочке действий которых, начиная от самого корня и до результативной части, отсутствуют

Из книги Начни. Врежь страху по лицу, перестань быть «нормальным» и займись чем-то стоящим автора Эйкафф Джон

Из книги Человек как животное автора Никонов Александр Петрович

Стратегии Общее понятие стратегий В принципе, все в той или иной степени понимают, что такое стратегия. Обладая каким-то набором знаний, полученных в результате обретения и обработки опыта, мы строим определенные модели поведения.Стратегия - это модель достижения цели.

Из книги Включите свою рабочую память на полную мощь автора Эллоуэй Трейси

Почему именно чистые стратегии? Львиная доля материала данного проекта постоянно указывает на тот момент, что необходимо использовать для перезаписи именно чистые стратегии и обязательно искать косяк исходя из них. Данный момент является неочевидным на первый взгляд и

Из книги Интроверт в экстравертном мире автора Романцева Елизавета

Из книги автора

Из книги автора

Стратегии Компьютерные стратегии требуют от игрока сосредоточенности, умения планировать свои действия и решать разнообразные задачи. Последние исследования свидетельствуют о том, что стратегии помогают улучшать когнитивные навыки игроков любого возраста. Согласно

Из книги автора

Чистые типы Существует такое понятие – «чистый психологический тип». Собственно, понятие есть, а предметов, то есть людей, идеально подходящих под это понятие, практически нет. Нет чистокровных интровертов и однозначных экстравертов. Тем более, что мы с вами договорились

В общем случае V * ≠ V * - седловой точки не существует. Оптимальное решение в чистых стратегиях также не существует. Однако, если расширить понятие чистой стратегии введением понятия смешанной стратегии, то удаётся реализовать алгоритм нахождения оптимального решения не вполне определённой игровой задачи. В такой ситуации предлагается использование статистического (вероятностного) подхода к нахождению оптимального решения антагонистической игры. Для каждого игрока, наряду с данным набором возможных для него стратегий, вводится неизвестный вектор вероятностей (относительных частот), с которыми следует применять ту или иную стратегию.

Обозначим вектор вероятностей (относительных частот) выбора заданных стратегий игрока A следующим образом:
P = (p 1 , p 2 ,…, p m),
где p i ≥ 0, p 1 + p 2 +…+ p m = 1. Величина p i называется вероятностью (относительной частотой) применения стратегии A i .

Аналогично для игрока B вводится неизвестный вектор вероятностей (относительных частот) имеет вид:
Q = (q 1 , q 2 ,…, q n),
где q j ≥ 0, q 1 + q 2 +…+ q n = 1. Величина q j называется вероятностью (относительной частотой) применения стратегии B j . Совокупность (комбинация) чистых стратегий A 1 , A 2 , …A m и B 1, B 2, …B n в сочетании с векторами вероятностей выбора каждой из них называются смешанными стратегиями.

Основной теоремой в теории конечных антагонистических игр является Теорема фон Неймана : каждая конечная матричная игра имеет, по крайней мере, одно оптимальное решение, возможно, среди смешанных стратегий .
Из этой теоремы следует, что не вполне определённая игра имеет хотя бы одно оптимальное решение в смешанных стратегиях. В таких играх решением будет пара оптимальных смешанных стратегий P * и Q * , таких, что если один из игроков придерживается своей оптимальной стратегии, то и другому игроку не выгодно отклоняться от своей оптимальной стратегии.
Средний выигрыш игрока A определяется математическим ожиданием:

Если вероятность (относительная частота) применения стратегии отлична от нуля, то такая стратегия называется активной .

Стратегии P * , Q * называются оптимальными смешанными стратегиями, если M A (P, Q *) ≤ M A (P * , Q *) ≤ M A (P * , Q) (1)
В этом случае M A (P * , Q *) называется ценой игры и обозначается через V (V * ≤ V ≤ V *). Первое из неравенств (1)означает, что отклонение игрока A от своей оптимальной смешанной стратегии при условии, что игрок B придерживается своей оптимальной смешанной стратегии, приводит к уменьшению среднего выигрыша игрока A. Второе из неравенств означает, что отклонение игрока B от своей оптимальной смешанной стратегии при условии, что игрок A придерживается своей оптимальной смешанной стратегии, приводит к увеличению среднего проигрыша игрока B .

В общем случае подобные задачи успешно решаются этим калькулятором .

Пример .

4 7 2
7 3 2
2 1 8

1. Проверяем, имеет ли платежная матрица седловую точку . Если да, то выписываем решение игры в чистых стратегиях.

Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.

Игроки B 1 B 2 B 3 a = min(A i)
A 1 4 7 2 2
A 2 7 3 2 2
A 3 2 1 8 1
b = max(B i) 7 7 8

Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(a i) = 2, которая указывает на максимальную чистую стратегию A 1 .
Верхняя цена игры b = min(b j) = 7. Что свидетельствует об отсутствии седловой точки, так как a ≠ b, тогда цена игры находится в пределах 2 ≤ y ≤ 7. Находим решение игры в смешанных стратегиях. Объясняется это тем, что игроки не могут объявить противнику свои чистые стратегии: им следует скрывать свои действия. Игру можно решить, если позволить игрокам выбирать свои стратегии случайным образом (смешивать чистые стратегии).

2. Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы .
В платежной матрице отсутствуют доминирующие строки и доминирующие столбцы.

3. Находим решение игры в смешанных стратегиях .
Запишем систему уравнений.
Для игрока I
4p 1 +7p 2 +2p 3 = y
7p 1 +3p 2 +p 3 = y
2p 1 +2p 2 +8p 3 = y
p 1 +p 2 +p 3 = 1

Для игрока II
4q 1 +7q 2 +2q 3 = y
7q 1 +3q 2 +2q 3 = y
2q 1 +q 2 +8q 3 = y
q 1 +q 2 +q 3 = 1

Решая эти системы методом Гаусса , находим:

y = 4 1 / 34
p 1 = 29 / 68 (вероятность применения 1-ой стратегии).
p 2 = 4 / 17 (вероятность применения 2-ой стратегии).
p 3 = 23 / 68 (вероятность применения 3-ой стратегии).

Оптимальная смешанная стратегия игрока I: P = (29 / 68 ; 4 / 17 ; 23 / 68)
q 1 = 6 / 17 (вероятность применения 1-ой стратегии).
q 2 = 9 / 34 (вероятность применения 2-ой стратегии).
q 3 = 13 / 34 (вероятность применения 3-ой стратегии).

Оптимальная смешанная стратегия игрока II: Q = (6 / 17 ; 9 / 34 ; 13 / 34)
Цена игры: y = 4 1 / 34